Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
ACS Omega ; 7(22): 18238-18246, 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1927058

ABSTRACT

Previous reports indicated the low stability of severe actute respiratory syndrome coronovirus 2 (SARS-CoV-2) on various porous surfaces, but the role of porosity was unclear because there was no direct comparison between porous and nonporous solids of the same chemistry. Through comparing pairs of solids with very similar chemistry, we find that porosity is important: porous glass has a much lower infectivity than nonporous glass. However, porosity is not sufficient to lower infectivity; permeability, which is the ability of a liquid to move through a material, is the important parameter. We show this by comparing a pair of porous CuO coatings where the pores are accessible in one case and inaccessible in the other case. When the pores are inaccessible, the infectivity remains similar to that for nonporous solids. Thus, for both glass and CuO, it is the access to porosity that decreases the infectivity of extracted liquid droplets. Having established the importance of permeability, there is the open question of the mechanism of changing the infectivity of SARS-CoV-2. Several hypotheses are possible, such as increasing the difficulty of extracting the virus from the solid, changing the drying time, increasing the surface area of active ingredient, etc. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) measurements show that less viral DNA is extracted from a permeable surface, suggesting that the virus becomes trapped in the pores. Finally, we consider the effect of drying. We show that permeability and the water contact angle on the solid have effects on the drying time of a contaminated droplet, which may in turn affect infectivity.

2.
ACS Appl Mater Interfaces ; 14(7): 8718-8727, 2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1683917

ABSTRACT

Transparent antimicrobial coatings can maintain the aesthetic appeal of surfaces and the functionality of a touch-screen while adding the benefit of reducing disease transmission. We fabricated an antimicrobial coating of silver oxide particles in a silicate matrix on glass. The matrix was grown by a modified Stöber sol-gel process with vapor-phase water and ammonia. A coating on glass with 2.4 mg of Ag2O per mm2 caused a reduction of 99.3% of SARS-CoV-2 and >99.5% of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared to the uncoated glass after 1 h. We envisage that screen protectors with transparent antimicrobial coatings will find particular application to communal touch-screens, such as in supermarkets and other check-out or check-in facilities where a number of individuals utilize the same touch-screen in a short interval.


Subject(s)
Anti-Infective Agents/chemistry , Bacterial Infections/prevention & control , COVID-19/prevention & control , Oxides/chemistry , Silver Compounds/chemistry , Ammonia/chemistry , Anti-Infective Agents/pharmacology , Bacterial Infections/microbiology , COVID-19/virology , Glass/chemistry , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Oxides/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Silicates/chemistry , Silver Compounds/pharmacology , Water/chemistry
3.
Sci Rep ; 11(1): 22868, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1532097

ABSTRACT

Transfer of SARS-CoV-2 from solids to fingers is one step in infection via contaminated solids, and the possibility of infection from this route has driven calls for increased frequency of handwashing during the COVID-19 pandemic. To analyze this route of infection, we measured the percentage of SARS-CoV-2 that was transferred from a solid to an artificial finger. A droplet of SARS-CoV-2 suspension (1 µL) was placed on a solid, and then artificial skin was briefly pressed against the solid with a light force (3 N). Transfer from a variety of solids was detected, and transfer from the non-porous solids, glass, stainless steel, and Teflon, was substantial when the droplet was still wet. The viral titer for the finger was 13-16% or 0.8-0.9 log less than for the input droplet. Transfer still occurred after the droplet evaporated, but was smaller, 3-9%. We found a lower level of transfer from porous solids but did not find a significant effect of solid wettability for non-porous solids.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , SARS-CoV-2/metabolism , COVID-19/metabolism , Equipment Contamination/prevention & control , Equipment Contamination/statistics & numerical data , Humans , SARS-CoV-2/pathogenicity , Skin/virology , Viral Load
4.
ACS Appl Mater Interfaces ; 13(46): 54706-54714, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1514382

ABSTRACT

Antimicrobial coatings are one method to reduce the spread of microbial diseases. Transparent coatings preserve the visual properties of surfaces and are strictly necessary for applications such as antimicrobial cell phone screens. This work describes transparent coatings that inactivate microbes within minutes. The coatings are based on a polydopamine (PDA) adhesive, which has the useful property that the monomer can be sprayed, and then the monomer polymerizes in a conformal film at room temperature. Two coatings are described (1) a coating where PDA is deposited first and then a thin layer of copper is grown on the PDA by electroless deposition (PDA/Cu) and (2) a coating where a suspension of Cu2O particles in a PDA solution is deposited in a single step (PDA/Cu2O). In the second coating, PDA menisci bind Cu2O particles to the solid surface. Both coatings are transparent and are highly efficient in inactivating microbes. PDA/Cu kills >99.99% of Pseudomonas aeruginosa and 99.18% of methicillin-resistant Staphylococcus aureus (MRSA) in only 10 min and inactivates 99.98% of SARS-CoV-2 virus in 1 h. PDA/Cu2O kills 99.94% of P. aeruginosa and 96.82% of MRSA within 10 min and inactivates 99.88% of SARS-CoV-2 in 1 h.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Drug Resistance, Microbial/drug effects , SARS-CoV-2/drug effects , COVID-19/virology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Surface Properties
5.
ACS Biomater Sci Eng ; 7(11): 5022-5027, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1454712

ABSTRACT

We developed antimicrobial coatings from ZnO particles that reduce the infectivity of SARS-CoV-2 suspensions by >99.9% in 1 h. The advantage of a coating is that it can be applied to a variety of objects, e.g., hand rails and door knobs, to hinder the spread of disease. Two porous coatings were prepared: one from submicrometer zinc oxide particles bound with silica menisci and the other from zinc oxide tetrapods bound with polyurethane. Experiments on glass coatings show that infectivity depends on porosity for hydrophilic materials, wherein aqueous droplets are imbibed into the pores.


Subject(s)
COVID-19 , Zinc Oxide , Anti-Bacterial Agents , Humans , SARS-CoV-2 , Suspensions , Zinc Oxide/pharmacology
6.
Curr Opin Colloid Interface Sci ; 55: 101481, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1272365

ABSTRACT

The COVID-19 pandemic had a major impact on life in 2020 and 2021. One method of transmission occurs when the causative virus, SARS-CoV-2, contaminates solids. Understanding and controlling the interaction with solids is thus potentially important for limiting the spread of the disease. We review work that describes the prevalence of the virus on common objects, the longevity of the virus on solids, and surface coatings that are designed to inactivate the virus. Engineered coatings have already succeeded in producing a large reduction in viral infectivity from surfaces. We also review work describing inactivation on facemasks and clothing and discuss probable mechanisms of inactivation of the virus at surfaces.

7.
ACS Appl Mater Interfaces ; 13(5): 5919-5928, 2021 Feb 10.
Article in English | MEDLINE | ID: covidwho-1042382

ABSTRACT

The ongoing COVID-19 pandemic has created a need for coatings that reduce infection from SARS-CoV-2 via surfaces. Such a coating could be used on common touch surfaces (e.g., door handles and railings) to reduce both disease transmission and fear of touching objects. Herein, we describe the design, fabrication, and testing of a cupric oxide anti-SARS-CoV-2 coating. Rapid loss of infectivity is an important design criterion, so a porous hydrophilic coating was created to allow rapid infiltration of aqueous solutions into the coating where diffusion distances to the cupric oxide surface are short and the surface area is large. The coating was deposited onto glass from a dispersion of cuprous oxide in ethanol and then thermally treated at 700 °C for 2 h to produce a CuO coating that is ≈30 µm thick. The heat treatment oxidized the cuprous oxide to cupric oxide and sintered the particles into a robust film. The SARS-CoV-2 infectivity from the CuO film was reduced by 99.8% in 30 min and 99.9% in 1 h compared to that from glass. The coating remained hydrophilic for at least 5 months, and there was no significant change in the cross-hatch test of robustness after exposure to 70% ethanol or 3 wt % bleach.


Subject(s)
COVID-19/prevention & control , COVID-19/virology , Copper/pharmacology , SARS-CoV-2/physiology , Animals , Chlorocebus aethiops , Humans , Photoelectron Spectroscopy , SARS-CoV-2/drug effects , Surface Properties , Vero Cells , Virus Inactivation/drug effects , X-Ray Diffraction
8.
ACS Appl Mater Interfaces ; 12(31): 34723-34727, 2020 Aug 05.
Article in English | MEDLINE | ID: covidwho-644208

ABSTRACT

SARS-CoV-2, the virus that causes the disease COVID-19, remains viable on solids for periods of up to 1 week, so one potential route for human infection is via exposure to an infectious dose from a solid. We have fabricated and tested a coating that is designed to reduce the longevity of SARS-CoV-2 on solids. The coating consists of cuprous oxide (Cu2O) particles bound with polyurethane. After 1 h on coated glass or stainless steel, the viral titer was reduced by about 99.9% on average compared to the uncoated sample. An advantage of a polyurethane-based coating is that polyurethane is already used to coat a large number of everyday objects. Our coating adheres well to glass and stainless steel as well as everyday items that people may fear to touch during a pandemic, such as a doorknob, a pen, and a credit card keypad button. The coating performs well in the cross-hatch durability test and remains intact and active after 13 days of being immersed in water or after exposure to multiple cycles of exposure to the virus and disinfection.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/genetics , Pandemics , Pneumonia, Viral/genetics , Betacoronavirus/pathogenicity , COVID-19 , Copper/chemistry , Copper/metabolism , Coronavirus Infections/virology , Humans , Pneumonia, Viral/virology , Polyurethanes/chemistry , Polyurethanes/metabolism , SARS-CoV-2 , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL